Genome editing tools for improved and sustainable livestock production systems
DOI:
https://doi.org/10.59317/tk0rpj66Keywords:
Genome editing, Livestock, Improved production, Disease resistance, Climate resilience, Regulatory frameworkAbstract
Genome editing has great potential to improve production traits such as dairy and meat quality, as well as wool production in livestock species. Some notable examples include the production of the β-lactoglobulin (BLG) knockout resulting in hypoallergenic milk, disruption of the myostatin (MSTN) gene leading to increased muscle mass, longer wool achieved by mutating the fibroblast growth factor 5 (FGF5) gene, and the development of porcine reproductive and respiratory syndrome (PRRS)-resistant pigs through the editing of the CD163 receptor. These advancements demonstrated the immense potential for enhancing productivity, animal health, and welfare to significant impact the economic benefits for farmers and industries. The regulatory landscape for gene-edited animals varies globally; the countries like Argentina, Australia, Brazil, Colombia, and Japan have adopted progressive policies by treating gene- edited animals similarly to those produced by conventional breeding. In conclusion, genome editing technologies have the potential to transform agriculture, promoting sustainability and efficiency in livestock production systems.
Downloads
References
Bi, H., Xie, S., Cai, C., Qian, L., Jiang, S., Xiao, G., and Cui, W. 2020. Frameshift mutation in myostatin gene by zinc-finger nucleases results in a significant increase in muscle mass in Meishan sows. Czech Journal of Animal Science, 65(5).
Burger, B. T., Beaton, B. P., Campbell, M. A., Brett, B. T., Rohrer, M. S., Plummer, S., and Cigan, A. M. 2024. Generation of a Commercial-Scale Founder Population of Porcine Reproductive and Respiratory Syndrome Virus Resistant Pigs Using CRISPR-Cas. The CRISPR Journal, 7(1), 12-28.
Crispo, M., Mulet, A. P., Tesson, L., Barrera, N., Cuadro, F., dos Santos- Neto, P. C., and Menchaca, A. 2015. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PloS One, 10(8), e0136690.
Dikmen, S. E. R. D. A. L., Khan, F. A., Huson, H. J., Sonstegard, T. S., Moss, J. I., Dahl, G. E., and Hansen, P. J. 2014. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97(9), 5508-5520.
Gim, G. M., Eom, K. H., Kwon, D. H., Jung, D. J., Kim, D. H., Yi, J. K., and Jang, G. 2023. Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation. Journal of Animal Science and Biotechnology, 14(1), 103.
Gim, G. M., Kwon, D. H., Eom, K. H., Moon, J., Park, J. H., Lee, W. W., and Jang, G. 2022. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR/Cas9. Biotechnology Journal, 17(7),2100198.
Godber, O. F., and Wall, R. 2014. Livestock and food security: vulnerability to population growth and climate change. Global Change Biology, 20(10), 3092-3102.
Godde, C. M., Mason-D’Croz, D., Mayberry, D. E., Thornton, P. K., and Herrero, M. 2021. Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 28, 100488.
Hallerman, E., Bredlau, J., Camargo, L. S. A., Dagli, M. L. Z., Karembu, M., Kovich, D., and Wray-Cahen, D. 2024. Enabling regulatory policy globally will promote realization of the potential of animal biotechnology. CABI Agriculture and Bioscience, 5(1), 25.
Kantor, A., McClements, M. E., and MacLaren, R. E. 2020. CRISPR-Cas9 DNA base-editing and prime-editing. International Journal of Molecular Sciences, 21(17), 6240.
Laible, G., Cole, S. A., Brophy, B., Wei, J., Leath, S., Jivanji, S., and Wells, D. N. 2021. Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genomics, 22, 1-12.
Ledesma, A. V., and Van Eenennaam, A. L. 2024. Global status of gene edited animals for agricultural applications. The Veterinary Journal,106142.
Li, W. R., Liu, C. X., Zhang, X. M., Chen, L., Peng, X. R., He, S. G., and Liu, M. J. 2017. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. The FEBS Journal, 284(17), 2764-2773.
Luo, J., Song, Z., Yu, S., Cui, D., Wang, B., Ding, F., and Li, N. 2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PloS One, 9(4), e95225.
Mohammadabadi, M., Bordbar, F., Jensen, J., Du, M., and Guo, W. 2021. Key genes regulating skeletal muscle development and growth in farm animals. Animals 2021, 11, 835.
Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., and Chen, C. 2014. Efficient gene knockout in goats using CRISPR/Cas9 system.PloS One, 9(9), e106718.
Nussenzweig, P. M., and Marraffini, L. A. 2020. Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annual Review of Genetics, 54, 93. Pacesa, M., Pelea, O., and Jinek, M. 2024. Past, present, and future of CRISPR genome editing technologies. Cell, 187(5), 1076-1100.
Perisse, I. V., Fan, Z., Singina, G. N., White, K. L., and Polejaeva, I. A. 2021. Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11, 614688.
Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., and Fahrenkrug, S. C. 2015. Genome edited sheep and cattle. Transgenic Research, 24, 147-153.
Santos, S. G. C. G. D., Saraiva, E. P., Gonzaga Neto, S., Maia, M. I. L., Lees, A. M., Sejian, V., and Fonsêca, V. D. F. C. 2022. Heat tolerance, thermal equilibrium and environmental management strategies for dairy cows living in intertropical regions. Frontiers in Veterinary Science, 9,988775.
Shanthalingam, S., Tibary, A., Beever, J. E., Kasinathan, P., Brown, W. C., and Srikumaran, S. 2016. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proceedings of the National Academy of Sciences, 113(46), 13186-13190. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Biophysical Journal, 106(2), 695a.
Sun, Z., Wang, M., Han, S., Ma, S., Zou, Z., Ding, F., and Dai, Y. 2018. Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Scientific Reports, 8(1), 15430.
Van Breedam, W., Delputte, P. L., Van Gorp, H., Misinzo, G., Vanderheijden, N., Duan, X., and Nauwynck, H. J. 2010. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. Journal of General Virology, 91(7), 1659-1667.
Van Eenennaam, A. L. 2023. New Genomic Techniques (NGT) in animals and their agri/food/feed products. EFSA Supporting Publications, 20(9),8311E.
Wang, S., Qu, Z., Huang, Q., Zhang, J., Lin, S., Yang, Y., and Zhang, K.2022. Application of gene editing technology in resistance breeding of livestock. Life, 12(7), 1070.
Wang, X., Cai, B., Zhou, J., Zhu, H., Niu, Y., Ma, B., and Chen, Y. 2016. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PloS one, 11(10), e0164640.
Wei, J., Brophy, B., Cole, S. A., Leath, S., Oback, B., Boch, J., and Laible, G. 2023. Production of light-coloured, low heat-absorbing Holstein Friesian cattle by precise embryo-mediated genome editing. Reproduction, Fertility and Development.
Wei, Y. Y., Zhan, Q. M., Zhu, X. X., Yan, A. F., Feng, J., Liu, L., and Tang, D. S. 2020. Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method. Biotechnology Letters, 42, 2091-2109.
Whitworth, K. M., Rowland, R. R., Ewen, C. L., Trible, B. R., Kerrigan, M. A., Cino-Ozuna, A. G., and Prather, R. S. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 34(1), 20-22.
Workman, A. M., Heaton, M. P., Vander Ley, B. L., Webster, D. A., Sherry, L., Bostrom, J. R., and Sonstegard, T. S. 2023. First gene-edited calf with reduced susceptibility to a major viral pathogen. PNAS Nexus, 2(5), pgad125.
Wu, H., Wang, Y., Zhang, Y., Yang, M., Lv, J., Liu, J., and Zhang, Y. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences, 112(13), E1530-E1539.
Xie, Z., Jiao, H., Xiao, H., Jiang, Y., Liu, Z., Qi, C., and Ouyang, H. 2020. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology. Antiviral Research, 174, 104696.
Xu, Y., Liu, H., Pan, H., Wang, X., Zhang, Y., Yao, B., and Li, Z. 2020. CRISPR/Cas9-mediated disruption of fibroblast growth factor 5 in rabbits results in a systemic long hair phenotype by prolonging anagen. Genes, 11(3), 297.
Yu, B., Lu, R., Yuan, Y., Zhang, T., Song, S., Qi, Z., and Cheng, Y. 2016. Efficient TALEN-mediated myostatin gene editing in goats. BMC Developmental Biology, 16, 1-8.
Zhang, X., Wang, L., Wu, Y., Li, W., An, J., Zhang, F., and Liu, M. 2016. Knockout of myostatin by zinc-finger nuclease in sheep fibroblasts and embryos. Asian-Australasian Journal of Animal Sciences, 29(10), 1500.
Zhao, X., Ni, W., Chen, C., Sai, W., Qiao, J., Sheng, J., and Hu, S. 2016. Targeted editing of myostatin gene in sheep by transcription activator- like effector nucleases. Asian-Australasian Journal of Animal Sciences, 29(3), 413.
Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., and Zhao, J. 2017. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceedings of the National Academy of Sciences, 114(45), E9474-E9482.
Zhou, W., Wan, Y., Guo, R., Deng, M., Deng, K., Wang, Z., and Wang, F. 2017. Generation of beta-lactoglobulin knock-out goats using CRISPR/ Cas9. PloS One, 12(10), e0186056.